1)

2) a)

b) The facts are related as they are $6 \times$ table facts and $6 \times$ table facts scaled up to make them either 10 or 100 times bigger (so $60 x$ and $600 x$ table facts). You can still see the original $6 \times$ table fact within the $60 \times$ and $600 \times$ table facts.
E.g. $3 \times \underline{6}=\underline{18}$
$\underline{3} \times \underline{60}=\underline{180}$

$$
\underline{3} \times \underline{600}=\underline{1800}
$$

3)

48	3	30	22	7200	12	60	440	6600	9	490	36	1	3800	480	54	660
6	64	4200	21	60	37	99	33	120	10	800	6000	2200	106	1800	15	30
24	180	540	93	600	66	81	7	3600	140	17	3000	3500	55	42	3200	540
60	6600	1200	1400	18	6	260	5000	30	3	220	360	4	320	4800	2	2400
600	5	240	39	4200	620	560	35	7200	2800	8	120	380	105	36	27	48
300	88	720	2600	1200	24	12	11	60	720	400	54	420	330	72	600	5400

1)

$480 \div 80=6$ \square $6 \times 500=3000$

$6 \times 3=18$ is the odd one out because the missing number from this calculation is 3. The missing number in all the other calculations is 6 .
2) They are all true. None of them are false.

Grace's statement is true. If you take a fact from the 3 times table and double the answer, it will make the answer for the equivalent 6 times table fact. For example: $2 \times 3=6 \quad 2 \times 6=12$

Ali's statement is also true because if you take a fact from the 12 times table and halve the answer, it will make the answer for the equivalent fact from the 6 times table. For example: $5 \times 12=60$ $5 \times 6=30$

Klaus' statement is also true because if you take a fact from the 5 times table and then add the number you multiplied 5 by to the answer, it will make the answer for the equivalent fact from the 6 times table.

For example: $4 \times 5=20 \rightarrow 20+4=24 \rightarrow 4 \times 6=24$

1) Here are some possible solutions but there are many more. Look for examples of children using and applying their commutative or inverse knowledge to find new calculations.
10×6 or 6×10
2×30 or 30×2
1×60 or 60×1
$2 \times 10 \times 3$ (in any order)
$5 \times 6 \times 2$ (in any order)
$60 \div 1$
$180 \div 3$
$600 \div 10$

Quality Standard
Approved

